Calcium-Activated Potassium Channels in Ischemia–Reperfusion: Learning for the Clinical Application
نویسنده
چکیده
The article by Tano and Gollasch published in Frontiers in Physiology reviewed the involvement of Ca-sensitive K channels in ischemia and reperfusion, with cardio-vascular and brain models mostly discussed (1), where the increased Na inflow activates Na–Ca exchanger, and leads to cell membrane depolarization (2). Activated Na–Ca exchanger works to pump Na out and Ca in (2). The increase in intracellular Ca results in activation of various Ca-sensitive K channels to establish K influx and hyperpolarization (1). In the scenario of lung transplantation, the graft is subjected to ischemia followed by reperfusion (following standard transplantation or during ex vivo perfusion). Graft ischemia results in inhibition of Na–K ATPase, inhibition of K ATP channels, drop of intracellular K, and the absence of flow favors cell membrane depolarization (2). Cell membrane depolarization and inactive K ATP channels would be associated with increased NADPH oxidase (NOX2) activity and increased production of reactive oxygen species (ROS) (2). ROS results in inflammasomes priming (3). Decreased intracellular K results in inflammasomes activation. Inflammasomes activation results in caspase 1 activation, which activates pro IL1β and pro IL18 (3). Both IL1β and IL18 are able to induce IL6. Accordingly, the enhancement of Casensitive K channels during lung graft ischemia would be expected to provide protection through antagonizing membrane depolarization (i.e., favoring hyperpolarization), which would attenuate ROS production, leading to abortion of inflammasomes priming and activation, and accordingly the release of proinflammatory cytokines. The Toronto team of lung transplantation has achieved significant inhibition of cytokines production within the lung graft through gene therapy during ex vivo lung perfusion (adenoviral IL10 delivery), which correlated with decreased incidence of primary graft dysfunction and chronic lung allograft dysfunction after transplantation (4). However, another study reported similar level of inhibited cytokines production through inhalation of 2% hydrogen. This was achieved through the up-regulation of hemeoxygenase-1 (HO-1) (5). HO-1 catalyzes the production of carbon monoxide, which activates big conductance Ca-activated K channels (6). These findings highlight the possible protective role of the enhancement of Ca-activated K channels during lung graft ischemia. Accordingly, further studies should be conducted to investigate the actual status of these channels during lung graft ischemia prior to transplantation. In addition, pharmacological activation of these channels could be a good target to protect the lung graft during transplantation, with corresponding improvement of the clinical outcome.
منابع مشابه
P13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملThe Mechanism of Preventive Effect of Captopril on Renal Ischemia Reperfusion Injury is Independent of ATP Dependent Potassium Channels
Background: Renal ischemia reperfusion (IR) injury has been a major source of concern during the past decades and angiotensin converting enzyme (ACE) inhibitors have been successfully used to prevent this injury. There have been some controversial reports about the involvement of KATP channels in the mechanism of action of ACE inhibitors. In this study, we examined the effect of KATP channel bl...
متن کاملCytoprotective action of the potassium channel opener NS1619 under conditions of disrupted calcium homeostasis.
Cytoprotective properties of potassium channel openers (KCOs) have been demonstrated in several models of cell injury, mainly in ischemia-reperfusion-induced damage of cardiac muscle. The mechanism responsible for the observed cytoprotection and the relative contribution of plasma membrane or inner mitochondrial membrane potassium channels regarding the beneficial effects exerted by KCOs remain...
متن کاملPreconditioning limits mitochondrial Ca during ischemia in rat hearts: role of KATP channels
Wang, Lianguo, Gennady Cherednichenko, Lisa Hernandez, Jessica Halow, S. Albert Camacho, Vincent Figueredo, and Saul Schaefer. Preconditioning limits mitochondrial Ca21 during ischemia in rat hearts: role of KATP channels. Am J Physiol Heart Circ Physiol 280: H2321–H2328, 2001.—Prolonged myocardial ischemia results in an increase in intracellular calcium concentration ([Ca]i), which is thought ...
متن کاملCalcium-activated potassium channels in ischemia reperfusion: a brief update
Ischemia and reperfusion (IR) injury constitutes one of the major causes of cardiovascular morbidity and mortality. The discovery of new therapies to block/mediate the effects of IR is therefore an important goal in the biomedical sciences. Dysfunction associated with IR involves modification of calcium-activated potassium channels (KCa) through different mechanisms, which are still under study...
متن کاملCardiac sodium/calcium exchanger preconditioning promotes anti-arrhythmic and cardioprotective effects through mitochondrial calcium-activated potassium channel.
BACKGROUND Reverse-mode of the Na(+)/Ca(2+) exchanger (NCX) stimulation provides cardioprotective effects for the ischemic/reperfused heart during ischemic preconditioning (IP). This study was designed to test the hypothesis that pretreatment with an inhibitor of cardiac delayed-rectifying K(+) channel (IKr), E4031, increases reverse-mode of NCX activity, and triggers preconditioning against in...
متن کامل